linear smoothing - Übersetzung nach russisch
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:     

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

linear smoothing - Übersetzung nach russisch

GENERATES A FORECAST OF FUTURE VALUES OF A TIME SERIES
Expenential Smoothing; Holt-Winters; Double exponential smoothing; Peter R. Winters

linear smoothing      

математика

линейное сглаживание

data smoothing         
DATASET MODIFICATION USING AN APPROXIMATING FUNCTION TO CAPTURE IMPORTANT PATTERNS IN THE DATA WHILE LEAVING OUT NOISE
Smoothed; Smoothes; Smoothly; Smoothest; Smoothdown; Smooth-down; Smoothes down; Smoothed down; Smoothing down; Data smoothing; Adaptive smoothening; Adaptive smoothing; Algorithms for smoothing; Smoothing algorithms

общая лексика

осреднение данных

linear transformation         
  • The function f:\R^2 \to \R^2 with f(x, y) = (2x, y) is a linear map. This function scales the x component of a vector by the factor 2.
  • The function f(x, y) = (2x, y) is additive: It doesn't matter whether vectors are first added and then mapped or whether they are mapped and finally added: f(\mathbf a + \mathbf b) = f(\mathbf a) + f(\mathbf b)
  • The function f(x, y) = (2x, y) is homogeneous: It doesn't matter whether a vector is first scaled and then mapped or first mapped and then scaled: f(\lambda \mathbf a) = \lambda f(\mathbf a)
MAPPING THAT PRESERVES THE OPERATIONS OF ADDITION AND SCALAR MULTIPLICATION
Linear operator; Linear mapping; Linear transformations; Linear operators; Linear transform; Linear maps; Linear isomorphism; Linear isomorphic; Linear Transformation; Linear Transformations; Linear Operator; Homogeneous linear transformation; User:The Uber Ninja/X3; Linear transformation; Bijective linear map; Nonlinear operator; Linear Schrödinger Operator; Vector space homomorphism; Vector space isomorphism; Linear extension of a function; Linear extension (linear algebra); Extend by linearity; Linear endomorphism

['liniətrænsfə'meiʃ(ə)n]

общая лексика

линейное преобразование

Definition

linear map
<mathematics> (Or "linear transformation") A function from a vector space to a vector space which respects the additive and multiplicative structures of the two: that is, for any two vectors, u, v, in the source vector space and any scalar, k, in the field over which it is a vector space, a linear map f satisfies f(u+kv) = f(u) + kf(v). (1996-09-30)

Wikipedia

Exponential smoothing

Exponential smoothing is a rule of thumb technique for smoothing time series data using the exponential window function. Whereas in the simple moving average the past observations are weighted equally, exponential functions are used to assign exponentially decreasing weights over time. It is an easily learned and easily applied procedure for making some determination based on prior assumptions by the user, such as seasonality. Exponential smoothing is often used for analysis of time-series data.

Exponential smoothing is one of many window functions commonly applied to smooth data in signal processing, acting as low-pass filters to remove high-frequency noise. This method is preceded by Poisson's use of recursive exponential window functions in convolutions from the 19th century, as well as Kolmogorov and Zurbenko's use of recursive moving averages from their studies of turbulence in the 1940s.

The raw data sequence is often represented by { x t } {\displaystyle \{x_{t}\}} beginning at time t = 0 {\displaystyle t=0} , and the output of the exponential smoothing algorithm is commonly written as { s t } {\displaystyle \{s_{t}\}} , which may be regarded as a best estimate of what the next value of x {\displaystyle x} will be. When the sequence of observations begins at time t = 0 {\displaystyle t=0} , the simplest form of exponential smoothing is given by the formulas:

s 0 = x 0 s t = α x t + ( 1 α ) s t 1 , t > 0 {\displaystyle {\begin{aligned}s_{0}&=x_{0}\\s_{t}&=\alpha x_{t}+(1-\alpha )s_{t-1},\quad t>0\end{aligned}}}

where α {\displaystyle \alpha } is the smoothing factor, and 0 < α < 1 {\displaystyle 0<\alpha <1} .

Übersetzung von &#39linear smoothing&#39 in Russisch